Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
1.
Mol Genet Metab Rep ; 38: 101053, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38469086

RESUMEN

GAMT deficiency is a rare autosomal recessive disease within the group of cerebral creatine deficiency syndromes. Cerebral creatine depletion and accumulation of guanidinoacetate (GAA) lead to clinical presentation with intellectual disability, seizures, speech disturbances and movement disorders. Treatment consists of daily creatine supplementation to increase cerebral creatine, reduction of arginine intake and supplementation of ornithine for reduction of toxic GAA levels. This study represents the first long-term follow-up over a period of 14 years, with detailed clinical data, biochemical and multimodal neuroimaging findings. Developmental milestones, brain MRI, quantitative single voxel 1H magnetic resonance spectroscopy (MRS) and biochemical analyses were assessed. The results reveal insights into the dose dependent effects of creatine/ornithine supplementation and expand the phenotypic spectrum of GAMT deficiency. Of note, the creatine concentrations, which were regularly monitored over a long follow-up period, increased significantly over time, but did not reach age matched control ranges. Our patient is the second reported to show normal neurocognitive outcome after an initial delay, stressing the importance of early diagnosis and treatment initiation.

2.
J Inherit Metab Dis ; 47(2): 387-403, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38200656

RESUMEN

Cerebral folate transport deficiency, caused by a genetic defect in folate receptor α, is a devastating neurometabolic disorder that, if untreated, leads to epileptic encephalopathy, psychomotor decline and hypomyelination. Currently, there are limited data on effective dosage and duration of treatment, though early diagnosis and therapy with folinic acid appears critical. The aim of this long-term study was to identify new therapeutic approaches and novel biomarkers for assessing efficacy, focusing on myelin-sensitive MRI. Clinical, biochemical, structural and quantitative MRI parameters of seven patients with genetically confirmed folate receptor α deficiency were acquired over 13 years. Multimodal MRI approaches comprised MR-spectroscopy (MRS), magnetization transfer (MTI) and diffusion tensor imaging (DTI) sequences. Patients started oral treatment immediately following diagnosis or in an interval of up to 2.5 years. Escalation to intravenous and intrathecal administration was performed in the absence of effects. Five patients improved, one with a presymptomatic start of therapy remained symptom-free, and one with inconsistent treatment deteriorated. While CSF 5-methyltetrahydrofolate and MRS parameters normalized immediately after therapy initiation, myelin-sensitive MTI and DTI measures correlated with gradual clinical improvement and ongoing myelination under therapy. Early initiation of treatment at sufficient doses, considering early intrathecal applications, is critical for favorable outcome. The majority of patients showed clinical improvements that correlated best with MTI parameters, allowing individualized monitoring of myelination recovery. Presymptomatic therapy seems to ensure normal development and warrants newborn screening. Furthermore, the quantitative parameters of myelin-sensitive MRI for therapy assessments can now be used for hypomyelination disorders in general.


Asunto(s)
Imagen de Difusión Tensora , Receptor 1 de Folato , Recién Nacido , Humanos , Receptor 1 de Folato/genética , Vaina de Mielina , Imagen por Resonancia Magnética/métodos , Biomarcadores
3.
Childs Nerv Syst ; 40(5): 1377-1388, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38206441

RESUMEN

PURPOSE: In vivo measurements of CSF and venous flow using real-time phase-contrast (RT-PC) MRI facilitate new insights into the dynamics and physiology of both fluid systems. In clinical practice, however, use of RT-PC MRI is still limited. Because many forms of hydrocephalus manifest in infancy and childhood, it is a prerequisite to investigate normal flow parameters during this period to assess pathologies of CSF circulation. This study aims to establish reference values of CSF and venous flow in healthy subjects using RT-PC MRI and to determine their age dependency. METHODS: RT-PC MRI was performed in 44 healthy volunteers (20 females, age 5-40 years). CSF flow was quantified at the aqueduct (Aqd), cervical (C3) and lumbar (L3) spinal levels. Venous flow measurements comprised epidural veins, internal jugular veins and inferior vena cava. Parameters analyzed were peak velocity, net flow, pulsatility, and area of region of interest (ROI). STATISTICAL TESTS: linear regression, student's t-test and analysis of variance (ANOVA). RESULTS: In adults volunteers, no significant changes in flow parameters were observed. In contrast, pediatric subjects exhibited a significant age-dependent decrease of CSF net flow and pulsatility in Aqd, C3 and L3. Several venous flow parameters decreased significantly over age at C3 and changed more variably at L3. CONCLUSION: Flow parameters varies depending on anatomical location and age. We established changes of brain and spinal fluid dynamics over an age range from 5-40 years. The application of RT-PC MRI in clinical care may improve our understanding of CSF flow pathology in individual patients.


Asunto(s)
Ventrículos Cerebrales , Imagen por Resonancia Magnética , Adulto , Femenino , Humanos , Niño , Adolescente , Adulto Joven , Preescolar , Acueducto del Mesencéfalo , Encéfalo/irrigación sanguínea , Hemodinámica , Líquido Cefalorraquídeo/fisiología
4.
Neurology ; 101(19): e1873-e1883, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37748882

RESUMEN

BACKGROUND AND OBJECTIVES: High disease activity and frequent therapy failure in pediatric multiple sclerosis (MS) make prognostic biomarkers urgently needed. We investigated whether serum neurofilament light chain (sNfL) levels in treatment-naive pediatric patients with MS are associated with early disease severity and indicate treatment outcomes. METHODS: A retrospective cohort study of patients seen in the Göttingen Center for MS in Childhood and Adolescence, Germany. Inclusion criteria were MS diagnosis according to the McDonald criteria, MS onset <18 years, and available pretreatment serum sample. sNfL levels were analyzed using a single-molecule array assay. Associations with clinical and MRI evidence of disease severity at sampling were evaluated using the Spearman correlations and nonparametric tests for group comparisons. Correlations between pretreatment sNfL and annualized relapse and new T2 lesion rate on first-line therapy, and odd ratios for switch to high-efficacy therapy were assessed. RESULTS: A total of 178 patients (116 women [65%]) with a mean sampling age of 14.3 years were included in the study. Pretreatment sNfL levels were above the ≥90th percentile reported for healthy controls in 80% of patients (median 21.1 pg/mL) and correlated negatively with age, but no correlation was seen with sex, oligoclonal band status, or body mass index. High pretreatment sNfL levels correlated significantly with a high number of preceding relapses, a shorter first interattack interval, a high T2 lesion count, and recent gadolinium-enhancing lesions. Of interest, sNfL levels reflected more strongly MRI activity rather than clinical activity. Pretreatment sNfL levels also correlated significantly with the relapse rate and occurrence of new/enlarging T2 lesions while on first-line injectable therapy. Odds of future therapy escalation increased from 0.14 for sNfL below 7.5 pg/mL to 6.38 for sNfL above 15 pg/mL. In patients with a recent relapse, higher sNfL levels were associated with poorer recovery 3 months after attack. DISCUSSION: The results of this study have 3 important implications: First, pretreatment sNfL levels are a valuable biomarker for underlying disease activity in pediatric patients with MS. Second, pretreatment sNfL levels in pediatric patients with MS have a predictive value for the response to first-line therapy and the necessity of future therapy escalation. Third, high sNfL levels during a relapse are associated with poor recovery in this age group.


Asunto(s)
Esclerosis Múltiple , Adolescente , Humanos , Femenino , Niño , Esclerosis Múltiple/patología , Filamentos Intermedios/patología , Estudios Retrospectivos , Biomarcadores , Gravedad del Paciente , Proteínas de Neurofilamentos , Recurrencia
6.
Int J Mol Sci ; 24(14)2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37511424

RESUMEN

Rett syndrome (RTT), a severe X-linked neurodevelopmental disorder, is primarily caused by mutations in the methyl CpG binding protein 2 gene (MECP2). Over 35% RTT patients carry nonsense mutation in MECP2, making it a suitable candidate disease for nonsense suppression therapy. In our previous study, gentamicin was found to induce readthrough of MECP2 nonsense mutations with modest efficiency. Given the recent discovery of readthrough enhancers, CDX compounds, we herein evaluated the potentiation effect of CDX5-1, CDX5-288, and CDX6-180 on gentamicin-mediated readthrough efficiency in transfected HeLa cell lines bearing the four most common MECP2 nonsense mutations. We showed that all three CDX compounds potentiated gentamicin-mediated readthrough and increased full-length MeCP2 protein levels in cells expressing the R168X, R255X, R270X, and R294X nonsense mutations. Among all three CDX compounds, CDX5-288 was the most potent enhancer and enabled the use of reduced doses of gentamicin, thus mitigating the toxicity. Furthermore, we successfully demonstrated the upregulation of full-length Mecp2 protein expression in fibroblasts derived from Mecp2R255X/Y mice through combinatorial treatment. Taken together, findings demonstrate the feasibility of this combinatorial approach to nonsense suppression therapy for a subset of RTT patients.


Asunto(s)
Síndrome de Rett , Humanos , Ratones , Animales , Síndrome de Rett/tratamiento farmacológico , Síndrome de Rett/genética , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Gentamicinas/farmacología , Codón sin Sentido , Células HeLa , Mutación
7.
Children (Basel) ; 10(3)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36980153

RESUMEN

Multiple sulfatase deficiency (MSD) is an extremely rare autosomal recessively inherited disease with a prevalence of 1:500.000 caused by mutations on the sulfatase-modifying-Factor 1 gene (SUMF1). MSD is most specifically characterised by a combination of developmentally retarded psychomotoric functions, neurodegeneration that entails the loss of many already acquired abilities, and by ichthyosis. Other symptoms include those associated with mucopolysaccharidosis, i.e., facial dysmorphy, dwarfism, and hepatosplenomegaly. In 50-75% of all MSD-affected patients, functional or structural ocular damage is likely. MSD seldom affects the anterior segment of the eye. The main pathology these patients present is a highly conspicuous tapetoretinal degeneration, similar to severe Retinitis pigmentosa, that leads to blindness at an early age. An initially five-year-old boy with MSD, genetically verified at his first examination in our opthalmology department (SUMF1 mutations c.776A>T, p.Asn259Ile; c.797A>T, p.Pro266Leu; c.836A>T, p.Ala279Val), and a 4, 5 year regular follow-up are described. The patient had some visual potential ("tunnel view"), which deteriorated dramatically after his fifth birthday. We observed no evidence of worsening retinal involvement in this patient in spite of his progressively worsening clinical symptoms, extending to total blindness/no light perception. OCT revealed that the outer retinal layers containing photoreceptors were diseased; the ellipsoid zone was only partially discernible and the outer nuclear layer appeared to be thinned out. The inner nuclear layer, ganglion cell layer, and retinal nerve fibre layer were indistinguishable. These anomalies are indicative of a severe pathology within the retina's inner layers. Characteristic anomalies in the fundus should stimulate clinicians to suspect a case of MSD in their differential diagnosis, and thus to order thorough genetic and paediatric diagnostics.

8.
EMBO Mol Med ; 15(3): e14837, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36789546

RESUMEN

Multiple sulfatase deficiency (MSD, MIM #272200) results from pathogenic variants in the SUMF1 gene that impair proper function of the formylglycine-generating enzyme (FGE). FGE is essential for the posttranslational activation of cellular sulfatases. MSD patients display reduced or absent sulfatase activities and, as a result, clinical signs of single sulfatase disorders in a unique combination. Up to date therapeutic options for MSD are limited and mostly palliative. We performed a screen of FDA-approved drugs using immortalized MSD patient fibroblasts. Recovery of arylsulfatase A activity served as the primary readout. Subsequent analysis confirmed that treatment of primary MSD fibroblasts with tazarotene and bexarotene, two retinoids, led to a correction of MSD pathophysiology. Upon treatment, sulfatase activities increased in a dose- and time-dependent manner, reduced glycosaminoglycan content decreased and lysosomal position and size normalized. Treatment of MSD patient derived induced pluripotent stem cells (iPSC) differentiated into neuronal progenitor cells (NPC) resulted in a positive treatment response. Tazarotene and bexarotene act to ultimately increase the stability of FGE variants. The results lay the basis for future research on the development of a first therapeutic option for MSD patients.


Asunto(s)
Enfermedad por Deficiencia de Múltiples Sulfatasas , Humanos , Enfermedad por Deficiencia de Múltiples Sulfatasas/diagnóstico , Enfermedad por Deficiencia de Múltiples Sulfatasas/genética , Enfermedad por Deficiencia de Múltiples Sulfatasas/patología , Bexaroteno , Evaluación Preclínica de Medicamentos , Sulfatasas/genética , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro
9.
Pediatr Neurol ; 139: 43-48, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36508882

RESUMEN

BACKGROUND: In the Division of Pediatric Neurology at the University Medical Center Göttingen we observed that many patients with Bell palsy are overweight or obese. To evaluate whether overweight and obesity are associated with increased risk of Bell palsy in children we conducted this single-centered retrospective study by performing a database search for International Classification of Diseases (ICD)-10 primary and secondary diagnosis of G51.0 (facial nerve palsy) between January 1, 2010, and December 31, 2020. METHODS: For risk assessment, patients' body mass indices (BMIs) were compared with BMI data of controls from a nationwide child health survey. RESULTS: In total, 202 patients with peripheral facial nerve palsies (pFPs) were included, of which nearly half were classified as Bell palsies; 38% and 24% of the patients with Bell palsy and pFP had a BMI above the 90th percentile, respectively. High BMI was associated with statistically increased odds of Bell palsy in the group of overweight and obese patients (BMI >90th percentile; odds ratio [OR], 2.42; 95% confidence interval [CI], 1.6 to 3.8; P < 0.001) and solely obese patients (BMI >97th percentile; OR, 2.43; 95% CI, 1.4 to 4.3; P = 0.003). CONCLUSIONS: We could confirm our observation that overweight and obesity are associated with increased risk of Bell palsy in children.


Asunto(s)
Parálisis de Bell , Parálisis Facial , Obesidad Infantil , Niño , Humanos , Sobrepeso/complicaciones , Sobrepeso/epidemiología , Parálisis de Bell/complicaciones , Parálisis de Bell/epidemiología , Estudios Retrospectivos , Obesidad/complicaciones , Obesidad/epidemiología , Medición de Riesgo , Índice de Masa Corporal , Obesidad Infantil/complicaciones , Obesidad Infantil/epidemiología
10.
Am J Med Genet A ; 188(9): 2652-2665, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35670379

RESUMEN

Biallelic mutations in the TTC5 gene have been associated with autosomal recessive intellectual disability (ARID) and subsequently with an ID syndrome including severe speech impairment, cerebral atrophy, and hypotonia as clinical cornerstones. A TTC5 role in IDs has been proposed based on the physical interaction of TTC5 with p300, and possibly reducing p300 co-activator complex activity, similarly to what was observed in Menke-Hennekam 1 and 2 patients (MKHK1 and 2) carrying, respectively, mutations in exon 30 and 31 of CREBBP and EP300, which code for the TTC5-binding region. Recently, TTC5-related brain malformation has been linked to tubulinopathies due to the function of TTC5 in tubulins' dynamics. We reported seven new patients with novel or recurrent TTC5 variants. The deep characterization of the molecular and phenotypic spectrum confirmed TTC5-related disorder as a recognizable, very severe neurodevelopmental syndrome. In addition, other relevant clinical aspects, including a severe pre- and postnatal growth retardation, cryptorchidism, and epilepsy, have emerged from the reversal phenotype approach and the review of already published TTC5 cases. Microcephaly and facial dysmorphism resulted in being less variable than that documented before. The TTC5 clinical features have been compared with MKHK1 published cases in the hypothesis that clinical overlap in some characteristics of the two conditions was related to the common p300 molecular pathway.


Asunto(s)
Discapacidad Intelectual , Microcefalia , Exones , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Masculino , Microcefalia/genética , Mutación , Fenotipo , Síndrome , Factores de Transcripción/genética
11.
Brain ; 145(9): 3022-3034, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-35759269

RESUMEN

TAF8 is part of the transcription factor II D complex, composed of the TATA-binding protein and 13 TATA-binding protein-associated factors (TAFs). Transcription factor II D is the first general transcription factor recruited at promoters to assemble the RNA polymerase II preinitiation complex. So far disorders related to variants in 5 of the 13 subunits of human transcription factor II D have been described. Recently, a child with a homozygous c.781-1G>A mutation in TAF8 has been reported. Here we describe seven further patients with mutations in TAF8 and thereby confirm the TAF8 related disorder. In two sibling patients, we identified two novel compound heterozygous TAF8 splice site mutations, c.45+4A > G and c.489G>A, which cause aberrant splicing as well as reduced expression and mislocalization of TAF8. In five further patients, the previously described c.781-1G > A mutation was present on both alleles. The clinical phenotype associated with the different TAF8 mutations is characterized by severe psychomotor retardation with almost absent development, feeding problems, microcephaly, growth retardation, spasticity and epilepsy. Cerebral imaging showed hypomyelination, a thin corpus callosum and brain atrophy. Moreover, repeated imaging in the sibling pair demonstrated progressive cerebral and cerebellar atrophy. Consistently, reduced N-acetylaspartate, a marker of neuronal viability, was observed on magnetic resonance spectroscopy. Further review of the literature shows that mutations causing a reduced expression of transcription factor II D subunits have an overlapping phenotype of microcephaly, developmental delay and intellectual disability. Although transcription factor II D plays an important role in RNA polymerase II transcription in all cells and tissues, the symptoms associated with such defects are almost exclusively neurological. This might indicate a specific vulnerability of neuronal tissue to widespread deregulation of gene expression as also seen in Rett syndrome or Cornelia de Lange syndrome.


Asunto(s)
Microcefalia , Enfermedades Neurodegenerativas , Factor de Transcripción TFIID , Atrofia/complicaciones , Niño , Humanos , Microcefalia/genética , Mutación , Enfermedades Neurodegenerativas/complicaciones , Fenotipo , ARN Polimerasa II , Proteína de Unión a TATA-Box/genética , Factor de Transcripción TFIID/genética
12.
Ther Adv Neurol Disord ; 15: 17562864211070449, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35514529

RESUMEN

Background: To support innovative trial designs in a regulatory setting for pediatric-onset multiple sclerosis (MS), the study aimed to perform a systematic literature review and meta-analysis of relapse rates with interferon ß (IFN ß), fingolimod, and natalizumab and thereby demonstrate potential benefits of Bayesian and non-inferiority designs in this population. Methods: We conducted a literature search in MEDLINE and EMBASE from inception until 17 June 2020 of all studies reporting annualized relapse rates (ARR) in IFN ß-, fingolimod-, or natalizumab-treated patients with pediatric-onset relapsing-remitting MS. These interventions were chosen because the literature was mainly available for these treatments, and they are currently used for the treatment of pediatric MS. Two researchers independently extracted data and assessed study quality using the Cochrane Effective Practice and Organization of Care - Quality Assessment Tool. The meta-analysis estimates were obtained by Bayesian random effects model. Data were summarized as ARR point estimates and 95% credible intervals. Results: We found 19 articles, including 2 randomized controlled trials. The baseline ARR reported was between 1.4 and 3.7. The meta-analysis-based ARR was significantly higher in IFN ß-treated patients (0.69, 95% credible interval: 0.51-0.91) versus fingolimod (0.11, 0.04-0.27) and natalizumab (0.17, 0.09-0.31). Based on the meta-analysis results, an appropriate non-inferiority margin versus fingolimod could be in the range of 2.29-2.67 and for natalizumab 1.72-2.29 on the ARR ratio scale. A Bayesian design, which uses historical information for a fingolimod or natalizumab control arm, could reduce the sample size of a new trial by 18 or 14 patients, respectively. Conclusion: This meta-analysis provides evidence that relapse rates are considerably higher with IFNs versus fingolimod or natalizumab. The results support the use of innovative Bayesian or non-inferiority designs to avoid exposing patients to less effective comparators in trials and bringing new medications to patients more efficiently.

13.
Sci Adv ; 8(15): eabj8633, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35427157

RESUMEN

Genetic CLN5 variants are associated with childhood neurodegeneration and Alzheimer's disease; however, the molecular function of ceroid lipofuscinosis neuronal protein 5 (Cln5) is unknown. We solved the Cln5 crystal structure and identified a region homologous to the catalytic domain of members of the N1pC/P60 superfamily of papain-like enzymes. However, we observed no protease activity for Cln5; and instead, we discovered that Cln5 and structurally related PPPDE1 and PPPDE2 have efficient cysteine palmitoyl thioesterase (S-depalmitoylation) activity using fluorescent substrates. Mutational analysis revealed that the predicted catalytic residues histidine-166 and cysteine-280 are critical for Cln5 thioesterase activity, uncovering a new cysteine-based catalytic mechanism for S-depalmitoylation enzymes. Last, we found that Cln5-deficient neuronal progenitor cells showed reduced thioesterase activity, confirming live cell function of Cln5 in setting S-depalmitoylation levels. Our results provide new insight into the function of Cln5, emphasize the importance of S-depalmitoylation in neuronal homeostasis, and disclose a new, unexpected enzymatic function for the N1pC/P60 superfamily of proteins.


Asunto(s)
Cisteína , Lipofuscinosis Ceroideas Neuronales , Niño , Humanos , Proteínas de Membrana de los Lisosomas/genética , Proteínas de Membrana de los Lisosomas/metabolismo , Proteínas de la Membrana/metabolismo , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/metabolismo
14.
Mult Scler ; 28(10): 1562-1575, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35266417

RESUMEN

BACKGROUND: In the phase III ASCLEPIOS I and II trials, participants with relapsing multiple sclerosis receiving ofatumumab had significantly better clinical and magnetic resonance imaging (MRI) outcomes than those receiving teriflunomide. OBJECTIVES: To assess the efficacy and safety of ofatumumab versus teriflunomide in recently diagnosed, treatment-naive (RDTN) participants from ASCLEPIOS. METHODS: Participants were randomized to receive ofatumumab (20 mg subcutaneously every 4 weeks) or teriflunomide (14 mg orally once daily) for up to 30 months. Endpoints analysed post hoc in the protocol-defined RDTN population included annualized relapse rate (ARR), confirmed disability worsening (CDW), progression independent of relapse activity (PIRA) and adverse events. RESULTS: Data were analysed from 615 RDTN participants (ofatumumab: n = 314; teriflunomide: n = 301). Compared with teriflunomide, ofatumumab reduced ARR by 50% (rate ratio (95% confidence interval (CI)): 0.50 (0.33, 0.74); p < 0.001), and delayed 6-month CDW by 46% (hazard ratio (HR; 95% CI): 0.54 (0.30, 0.98); p = 0.044) and 6-month PIRA by 56% (HR: 0.44 (0.20, 1.00); p = 0.049). Safety findings were manageable and consistent with those of the overall ASCLEPIOS population. CONCLUSION: The favourable benefit-risk profile of ofatumumab versus teriflunomide supports its consideration as a first-line therapy in RDTN patients.ASCLEPIOS I and II are registered at ClinicalTrials.gov (NCT02792218 and NCT02792231).


Asunto(s)
Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Anticuerpos Monoclonales Humanizados/efectos adversos , Humanos , Esclerosis Múltiple/inducido químicamente , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple Recurrente-Remitente/diagnóstico , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico , Recurrencia , Toluidinas/efectos adversos
15.
Sci Rep ; 12(1): 2568, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35173200

RESUMEN

Venous system pathologies have increasingly been linked to clinically relevant disorders of CSF circulation whereas the exact coupling mechanisms still remain unknown. In this work, flow dynamics of both systems were studied using real-time phase-contrast flow MRI in 16 healthy subjects during normal and forced breathing. Flow evaluations in the aqueduct, at cervical level C3 and lumbar level L3 for both the CSF and venous fluid systems reveal temporal modulations by forced respiration. During normal breathing cardiac-related flow modulations prevailed, while forced breathing shifted the dominant frequency of both CSF and venous flow spectra towards the respiratory component and prompted a correlation between CSF and venous flow in the large vessels. The average of flow magnitude of CSF was increased during forced breathing at all spinal and intracranial positions. Venous flow in the large vessels of the upper body decreased and in the lower body increased during forced breathing. Deep respiration couples interdependent venous and brain fluid flow-most likely mediated by intrathoracic and intraabdominal pressure changes. Further insights into the driving forces of CSF and venous circulation and their correlation will facilitate our understanding how the venous system links to intracranial pressure regulation and of related forms of hydrocephalus.


Asunto(s)
Líquido Cefalorraquídeo/fisiología , Circulación Cerebrovascular , Respiración , Adulto , Velocidad del Flujo Sanguíneo , Femenino , Humanos , Masculino
16.
J Med Genet ; 59(2): 204-208, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33199448

RESUMEN

BACKGROUND: Biallelic variants in PNPT1 cause a mitochondrial disease of variable severity. PNPT1 (polynucleotide phosphorylase) is a mitochondrial protein involved in RNA processing where it has a dual role in the import of small RNAs into mitochondria and in preventing the formation and release of mitochondrial double-stranded RNA into the cytoplasm. This, in turn, prevents the activation of type I interferon response. Detailed neuroimaging findings in PNPT1-related disease are lacking with only a few patients reported with basal ganglia lesions (Leigh syndrome) or non-specific signs. OBJECTIVE AND METHODS: To document neuroimaging data in six patients with PNPT1 highlighting novel findings. RESULTS: Two patients exhibited striatal lesions compatible with Leigh syndrome; one patient exhibited leukoencephalopathy and one patient had a normal brain MRI. Interestingly, two unrelated patients exhibited cystic leukoencephalopathy resembling RNASET2-deficient patients, patients with Aicardi-Goutières syndrome (AGS) or congenital CMV infection. CONCLUSION: We suggest that similar to RNASET2, PNPT1 be searched for in the setting of cystic leukoencephalopathy. These findings are in line with activation of type I interferon response observed in AGS, PNPT1 and RNASET2 deficiencies, suggesting a common pathophysiological pathway and linking mitochondrial diseases, interferonopathies and immune dysregulations.


Asunto(s)
Encéfalo/diagnóstico por imagen , Exorribonucleasas/genética , Enfermedad de Leigh/genética , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Adulto , Encéfalo/patología , Niño , Preescolar , Humanos , Interferón Tipo I/genética , Enfermedad de Leigh/patología , Leucoencefalopatías/genética , Leucoencefalopatías/patología , Enfermedades Mitocondriales/diagnóstico por imagen , Neuroimagen , Secuenciación Completa del Genoma
17.
Nat Commun ; 12(1): 6530, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34764281

RESUMEN

Infantile-onset RNaseT2 deficient leukoencephalopathy is characterised by cystic brain lesions, multifocal white matter alterations, cerebral atrophy, and severe psychomotor impairment. The phenotype is similar to congenital cytomegalovirus brain infection and overlaps with type I interferonopathies, suggesting a role for innate immunity in its pathophysiology. To date, pathophysiological studies have been hindered by the lack of mouse models recapitulating the neuroinflammatory encephalopathy found in patients. In this study, we generated Rnaset2-/- mice using CRISPR/Cas9-mediated genome editing. Rnaset2-/- mice demonstrate upregulation of interferon-stimulated genes and concurrent IFNAR1-dependent neuroinflammation, with infiltration of CD8+ effector memory T cells and inflammatory monocytes into the grey and white matter. Single nuclei RNA sequencing reveals homeostatic dysfunctions in glial cells and neurons and provide important insights into the mechanisms of hippocampal-accentuated brain atrophy and cognitive impairment. The Rnaset2-/- mice may allow the study of CNS damage associated with RNaseT2 deficiency and may be used for the investigation of potential therapies.


Asunto(s)
Endorribonucleasas/metabolismo , Leucoencefalopatías/metabolismo , Leucoencefalopatías/patología , Animales , Linfocitos T CD8-positivos/metabolismo , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Modelos Animales de Enfermedad , Endorribonucleasas/genética , Femenino , Citometría de Flujo , Genotipo , Humanos , Inmunohistoquímica , Leucoencefalopatías/genética , Imagen por Resonancia Magnética , Masculino , Células T de Memoria/metabolismo , Ratones , Ratones Noqueados , Neuroglía/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
18.
Neuropediatrics ; 52(4): 233-241, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34192788

RESUMEN

New experimental and clinical findings question the historic view of hydrocephalus and its 100-year-old classification. In particular, real-time magnetic resonance imaging (MRI) evaluation of cerebrospinal fluid (CSF) flow and detailed insights into brain water regulation on the molecular scale indicate the existence of at least three main mechanisms that determine the dynamics of neurofluids: (1) inspiration is a major driving force; (2) adequate filling of brain ventricles by balanced CSF upsurge is sensed by cilia; and (3) the perivascular glial network connects the ependymal surface to the pericapillary Virchow-Robin spaces. Hitherto, these aspects have not been considered a common physiologic framework, improving knowledge and therapy for severe disorders of normal-pressure and posthemorrhagic hydrocephalus, spontaneous intracranial hypotension, and spaceflight disease.


Asunto(s)
Hidrocefalia , Imagen por Resonancia Magnética , Anciano de 80 o más Años , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Ventrículos Cerebrales/diagnóstico por imagen , Ventrículos Cerebrales/fisiología , Humanos , Hidrocefalia/diagnóstico por imagen , Hidrocefalia/etiología , Imagen por Resonancia Magnética/métodos
19.
Metabolites ; 11(6)2021 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-34072483

RESUMEN

Peroxisomes are central hubs for cell metabolism and their dysfunction is linked to devastating human disorders, such as peroxisomal biogenesis disorders and single peroxisomal enzyme/protein deficiencies. For decades, biochemical diagnostics have been carried out using classical markers such as very long-chain fatty acids (VLCFA), which can be inconspicuous in milder and atypical cases. Holistic metabolomics studies revealed several potentially new biomarkers for peroxisomal disorders for advanced laboratory diagnostics including atypical cases. However, establishing these new markers is a major challenge in routine diagnostic laboratories. We therefore investigated whether the commercially available AbsoluteIDQ p180 kit (Biocrates Lifesciences), which utilizes flow injection and liquid chromatography mass spectrometry, may be used to reproduce some key results from previous global metabolomics studies. We applied it to serum samples from patients with mutations in peroxisomal target genes PEX1, ABCD1, and the HSD17B4 gene. Here we found various changes in sphingomyelins and lysophosphatidylcholines. In conclusion, this kit can be used to carry out extended diagnostics for peroxisomal disorders in routine laboratories, even without access to a metabolomics unit.

20.
Glia ; 69(10): 2362-2377, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34137074

RESUMEN

Cerebral disease manifestation occurs in about two thirds of males with X-linked adrenoleukodystrophy (CALD) and is fatally progressive if left untreated. Early histopathologic studies categorized CALD as an inflammatory demyelinating disease, which led to repeated comparisons to multiple sclerosis (MS). The aim of this study was to revisit the relationship between axonal damage and myelin loss in CALD. We applied novel immunohistochemical tools to investigate axonal damage, myelin loss and myelin repair in autopsy brain tissue of eight CALD and 25 MS patients. We found extensive and severe acute axonal damage in CALD already in prelesional areas defined by microglia loss and relative myelin preservation. In contrast to MS, we did not observe selective phagocytosis of myelin, but a concomitant decay of the entire axon-myelin unit in all CALD lesion stages. Using a novel marker protein for actively remyelinating oligodendrocytes, breast carcinoma-amplified sequence (BCAS) 1, we show that repair pathways are activated in oligodendrocytes in CALD. Regenerating cells, however, were affected by the ongoing disease process. We provide evidence that-in contrast to MS-selective myelin phagocytosis is not characteristic of CALD. On the contrary, our data indicate that acute axonal injury and permanent axonal loss are thus far underestimated features of the disease that must come into focus in our search for biomarkers and novel therapeutic approaches.


Asunto(s)
Adrenoleucodistrofia , Esclerosis Múltiple , Adrenoleucodistrofia/metabolismo , Axones/metabolismo , Humanos , Masculino , Esclerosis Múltiple/patología , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...